Пятница
17.05.2024
01:37
 

Сайт
Тимура Соколова

ICQ 325225332
 
Приветствую Вас Гость | RSSГлавная | Регистрация | Вход
Меню сайта
Разделы новостей
Видео обучение [5] Советы [75]
Новости [18] Книги [10]
Журналы [1] Интересное не по теме [18]
Наш опрос
Оцените мой сайт
Всего ответов: 302


Главная » 2009 » Март » 20 » Подробно о вспышках.
Подробно о вспышках.
23:53

Свет, освещение — это одна из основ фотографии. Именно свет выявляет форму, объем, фактуру и цвет предметов окружающего нас мира. Ну а благодаря нашему зрению мы имеем способность во всех деталях воспринимать эту информацию. Наше зрение — мощнейший инструмент восприятия. Мы отлично видим окружающие нас предметы и при ярком контрастном свете солнца, и в пасмурную погоду, и при искусственном освещении, и даже в сумерках. Однако средства фотографии не столь совершенны. И матрица цифрового аппарата, и пленка требуют для получения изображения вполне определенных параметров освещения фотографируемой сцены.

Впрочем, когда речь идет о съемке в солнечную погоду, то и интенсивность освещения, и его цветовые параметры практически всегда удовлетворяют этим требованиям. Но свет солнца, как известно, величина непостоянная. В одно время интенсивность солнечного света более чем достаточна для съемки, а через полчаса солнце может спрятаться за облака или вообще уйти за горизонт. А в помещении интенсивность солнечного света чаще всего и вовсе недостаточна для съемки. Так что без применения искусственного освещения о съемке в помещении или при других неблагоприятных условиях лучше вообще забыть. С другой стороны, создать при помощи обычных осветительных приборов — ламп накаливания — столь высокий уровень освещенности, чтобы выдержка при съемке не растягивалась на секунды и минуты, весьма сложно. Не говоря уже о том, что лампы можно расставить тоже далеко не везде, и что цветовые параметры света ламп накаливания сильно отличаются от общепринятого эталона — солнечного света.

Поэтому традиционная фотография «довспышечной» эпохи не отличалась слишком большим выбором сюжетов. Ведь фотограф той поры практически не был ограничен только при съемке дневных пейзажей или жанровых сцен на улице. Съемка интерьеров и студийные портреты уже были связаны с гораздо большим количеством проблем, а репортажная съемка (особенно тогда, когда действие происходило не на улице, в солнечную погоду) представляла одну сплошную проблему.

Выйти из круга сюжетов, ограниченного наличием достаточного по интенсивности солнечного освещения, фотографии дало возможность изобретение фотовспышки. Компактный и всегда готовый к использованию источник света не зря заслужил эпитет «карманное солнце». Исключительно большая мощность, а значит — и минимальная продолжительность импульса света, излучаемого импульсной лампой электронной фотовспышки, позволили применять моментальные выдержки при съемке не только на улице в ясную солнечную погоду, но и в условиях недостаточной освещенности — в пасмурную погоду, в темное время суток и даже в помещении. Для цветной фотографии было важно и то, что спектр света фотовспышки практически идентичен спектру солнечного света. А значит, нет необходимости в применении каких-либо цветокорректирующих светофильтров при съемке со вспышкой на самую распространенную «дневную» пленку. Да и смешивать солнечный свет со светом вспышки можно без каких-либо проблем, используя фотовспышку для подсветки теней при съемке на солнце.

Поначалу электронные фотовспышки были устройствами достаточно громоздкими и дорогими. Но со временем электроника совершенствовалась. Вспышки уменьшились в размерах и стали намного доступнее по цене. Кроме того, вспышки обзавелись многими другими полезными функциями — стали питаться от компактных батареек или аккумуляторов, получили возможность автоматического управления. Поэтому и неудивительно, что электронные фотовспышки на сегодняшний день заработали огромную популярность среди самых широких слоев фотографов-профессионалов и фотолюбителей. Ведь только раньше фотовспышка выступала в роли дополнительного аксессуара. Сейчас же встроенная фотовспышка представляет собой обязательную деталь конструкции основной массы фотоаппаратов — от полупрофессиональных зеркалок до одноразовых «мыльниц» ценой в несколько долларов.

Устройство фотовспышек

Конструкция практически любой электронной фотовспышки состоит из трех главных элементов — газоразрядной лампы, накопительного конденсатора и устройства запуска.

Преобразование электрической энергии в световую происходит благодаря импульсной газоразрядной лампе. Она представляет собой прозрачную герметичную стеклянную трубку (прямой, дугообразной или кольцевой формы), заполненную инертным газом (чаще всего — ксеноном). В торцах трубки впаяны два электрода, изготовленные из тугоплавких металлов. К этим электродам подключается мощный источник высокого напряжения — накопительный конденсатор. Он запасает в себе энергию, которая при разряде будет превращена в свет. Третий электрод импульсной лампы — поджигающий. Он делается обычно из проволоки или в виде полоски токопроводящей мастики.

Устройство запуска — это повышающий автотрансформатор, на первичную обмотку которого через синхроконтакт фотоаппарата разряжается пусковой конденсатор небольшой емкости. При этом на выводе вторичной (высоковольтной) обмотки, подключенной к поджигающему электроду газоразрядной лампы, возникает переменный потенциал очень высокого напряжения (несколько тысяч вольт).

Соответственно электронная фотовспышка работает следующим образом. Накопительный конденсатор, заряженный до высокого напряжения (порядка 300—400 вольт), подсоединен к газоразрядной лампе. Однако такого напряжения на электродах лампы все же недостаточно для того, чтобы разряд произошел самопроизвольно. Для этого (естественно, в момент полного открытия затвора, при срабатывании синхроконтакта) высоковольтный импульс, подаваемый на поджигающий электрод лампы, ионизирует газ внутри нее и приводит к началу разряда накопительного конденсатора через лампу-вспышку. За время разряда, длящегося тысячные доли секунды и сопровождаемого интенсивной световой вспышкой, напряжение на конденсаторе падает, и разряд прекращается.

После этого накопительный конденсатор снова заряжается, и при повторной подаче импульса на поджигающий электрод лампа может дать следующую вспышку. На использовании подобных принципов построены практически все нынешние фотовспышки от простых и недорогих до самых сложных автоматических, поэтому дальше углубляться в физику этих процессов мы не будем. Гораздо интереснее и полезнее более подробно рассмотреть принципы использования света фотовспышек в фотографии, а также базовые и более продвинутые режимы работы вспышек.

Основные параметры фотовспышек

Энергия вспышки

Максимальная энергия импульса — одна из самых главных характеристик фотовспышки. Чем больше энергия, тем больше света может дать вспышка. Максимальную энергию вспышки всегда достаточно легко подсчитать, поскольку она определяется только емкостью накопительного конденсатора и напряжением на нем. Однако эта величина, хоть она и рассчитывается проще всего, практически никогда не используется (к ней обращаются разве что только фотографы-профессионалы, работающие со студийными вспышками). Почему? Дело в том, что для расчетов экспозиции при съемке со вспышкой важна не величина энергии вспышки, а результат ее действия — освещенность объекта съемки в результате вспышки. Ну а рассчитать освещенность объекта съемки исходя из энергии вспышки — не так просто.

В эту формулу кроме энергии вспышки входят еще много самых разных величин — и расстояние до объекта съемки, и светоотдача импульсной лампы, и параметры отражателя и рассеивателя, направляющих свет вспышки. В итоге получается сложная формула, которой оперировать при репортажной съемке весьма неудобно, да и классифицировать вспышки по их основному параметру — «дальнобойности» — такая формула возможности не дает. Однако выход был найден благодаря особой характеристике вспышки, носящей название «Ведущее число».

Ведущее число вспышки

Как известно, если размеры источника света (вспышки) значительно меньше расстояния до объекта съемки, то освещенность обратно пропорциональна квадрату расстояния до источника света. То есть из двух объектов, расположенных по отношению к источнику света один вдвое дальше другого, ближний будет освещен в четыре раза сильнее. Соответственно для сохранения постоянным количества света, падающего на пленку в фотоаппарате при съемке каждого из этих объектов, диафрагма объектива должна будет отличаться на две ступени. Если, к примеру, для правильной экспозиции одного объекта, расположенного на расстоянии 1 метра от источника света (вспышки), оптимальное значение диафрагмы будет 5,6, то для расположенного вдвое дальше диафрагму придется открыть до значения 2,8.

И вот тут обнаруживается довольно удобная закономерность: если перемножить значения расстояния до объекта съемки и соответствующего одному уровню экспозиции диафрагменного числа объектива, то эта величина будет иметь постоянное значение — в нашем примере 5,6 метрa (5,6 х 1 метр или 2,8 х 2 метра). Выведенная таким образом величина весьма часто используется в фотографии, где ее принято называть «ведущим числом» вспышки (GN, «Guide Number» в англоязычной литературе). С помощью ведущего числа процедура расчета необходимой диафрагмы при известных параметрах вспышки и расстоянии до объекта съемки становится занятием весьма простым и достаточно точным. Для определения необходимой диафрагмы, которую нужно установить на объективе, достаточно ведущее число вспышки разделить на расстояние до объекта съемки и (для удобства) округлить до ближайшего стандартного диафрагменного числа.

Величина ведущего числа вспышки определяется для какого-то одного значения светочувствительности пленки, обычно — для пленки ISO 100. Поскольку для более чувствительных пленок количество света, необходимое для создания нормальной экспозиции, будет меньше, следовательно, объектив при съемке нужно будет задиафрагмировать больше на столько ступеней, во сколько раз отличается чувствительность примененной пленки от стандартной ISO 100. Воспользовавшись данными предыдущего примера, можно подсчитать, что для тех же световых условий, при которых для пленки чувствительностью ISO 100 нормальное изображение получалось при диафрагме 5,6, при использовании пленки с чувствительностью ISO 400 диафрагму нужно будет закрыть еще на два деления — до 11. Соответственно и значение ведущего числа этой же вспышки для пленки ISO 400 возрастет вдвое — до значения 11.

То есть уменьшение (увеличение) чувствительности пленки в два раза приводит к уменьшению (увеличению) ведущего числа вспышки примерно в 1,5 раза (точнее в 1,41 раза — квадратный корень из двух). Обычно принято обозначать ведущее число вспышки в метрах для пленки ISO 100. Однако могут встречаться и другие маркировки. Например в США и некоторых других странах, где метрическими мерами не пользуются, ведущее число принято выражать в футах (соответственно его значение становится примерно в 3 раза больше ведущего числа в метрах).

«Рекламное» ведущее число вспышки

Здесь стоит сделать небольшое «лирическое отступление». В «околофотографических» кругах весьма распространено мнение, что достаточно большое (до 50—60!) ведущее число современных вспышек — это не более чем надувательство потребителя. Попробуем разобраться в этом вопросе.

Каждому покупателю хочется купить более мощную (точнее — «дальнобойную») вспышку за минимальные деньги. Это естественно. При этом он руководствуется информацией о ее ведущем числе. Это тоже нормально. Но у производителя тоже свои интересы — чем мощнее вспышка, тем она выходит дороже, прожорливей, больше и тяжелее. Поэтому в случае зумированной вспышки ее ведущее число почти всегда фигурирует в названии (или в рекламе) в максимальном значении, то есть при минимальном угле освещения и наиболее эффективном режиме срабатывания. Естественно, при увеличении угла рассеивания света ведущее число падает, при переходе в режим высокоскоростной синхронизации FP/HSS тоже падает (в несколько раз).

Ведущее число вспышки может также снижаться благодаря другим факторам — например из-за несвежих батареек или разряженных аккумуляторов, из-за недостаточно продолжительных перерывов между вспышками, из-за загрязнения (помутнения) стекла рассеивателя и так далее. В итоге оказывается, что вспышка при соблюдении соответствующих условий (положения зум-рефлектора 105 или 85 мм, свежих аккумуляторах, достаточных для полного заряда конденсатора промежутках между вспышками и так далее) действительно обладает таким ведущим числом, как указано в рекламе. А для других условий ведущее число будет меньше (иной раз заметно). Так что тут все достаточно честно.

Впрочем, «дальнобойность» вспышки наиболее остро востребована при использовании длиннофокусной оптики. Ведь при съемке на большом расстоянии применяется чаще всего именно длиннофокусная оптика, отличающаяся к тому же еще и заметно меньшей светосилой, чем нормальная или широкоугольная. Поэтому зумированные вспышки, даже обладая меньшей максимальной энергией, чем их незумированные аналоги, все же более удобны и более универсальны. К примеру, при сравнении вспышек Minolta Program 2500 (D) и 3600HS (D) оказывается, что формально более мощная (исходя из маркировки) 3600HS (D) на самом деле имеет меньшую энергию, так как ее ведущее число в положении зум-рефлектора «28 мм» составляет всего 22, в то время как у 2500 (D) при таких же условиях ведущее число выше — 25. Однако при съемке 35-мм объективом эти вспышки сравниваются по эффективности, а при использовании длиннофокусной оптики (85 мм и более) эффективность менее мощной вспышки 3600HS (D) уже очевидна — ведущее число 36 против 25.

Угол рассеивания света

Поскольку фотографические объективы имеют вполне определенный угол зрения, то при съемке этими объективами с применением вспышки «палить из пушки по воробьям», то есть светить во все стороны — не лучший вариант, поскольку в этом случае основная часть энергии вспышки будет израсходована впустую. Гораздо эффективнее вести «снайперский огонь», а именно — освещать объект съемки только в пределах поля зрения объектива. Для этого нужно собрать весь свет от вспышки в концентрированный пучок, угол расхождения которого точно бы соответствовал углу зрения используемого объектива. Впрочем, надо обращать внимание на один важный момент. Если вспышка освещает меньшую площадь, чем «видит» объектив, то по краям (в первую очередь по углам) фотографии появятся неприятные затемнения.

Подобные эффекты нередко мы видим на фотографиях, сделанных дешевыми «мыльницами». Так что тут приходится идти на компромисс — выбирать угол рассеивания света вспышки достаточно большим, чтобы не возникало проблем с затемнением углов кадра при съемке самым широкоугольным из наиболее часто используемых объективов. Однако угол не должен быть слишком широким, чтобы ведущее число вспышки было как можно больше. Поэтому производители при разработке вспышек с жестко расположенным рефлектором обычно выбирают оптимальный угол рассеивания, соответствующий углу зрения объектива 35 мм (Canon Speedlite 480EG) или 28 мм (Minolta Program Flash 2500 (D)).

У некоторых вспышек рассеиватель сделан подвижным (например Metz 36AF-3), благодаря чему появляется возможность ручной подстройки угла рассеивания света, а значит и оптимизации ведущего числа. К примеру, при пользовании длиннофокусным объективом можно сдвинуть рассеиватель в положение «теле», значительно повысив «дальнобойность» вспышки в сравнении с положением, соответствующим углу зрения широкоугольного объектива. Однако при репортажной съемке зум-объективом достаточно неудобно каждый раз при изменении фокусного расстояния объектива передвигать рассеиватель вспышки в соответствующее положение. Ошибка, сделанная в спешке, может стоить дорого — световой пучок, концентрированный более чем необходимо, осветит только центральную часть кадра, а края останутся темными. Поэтому, чтобы избавить себя от этой заботы, приходится жертвовать ведущим числом, устанавливая зум-головку вспышки в широкоугольное положение, гарантированно покрывающее поле зрения объектива.

Автозумирование вспышки

В системах автофокусных зеркальных фотоаппаратов, благодаря способности объектива и камеры сообщать вспышке текущее фокусное расстояние объектива, появилась возможность автоматически согласовывать угол рассеивания света вспышки с углом зрения объектива. Для использования этой информации во вспышку встроен электропривод, изменяющий расстояние между рассеивателем и отражателем и, соответственно, автоматически меняющий угол рассеивания света вспышки в зависимости от фокусного расстояния объектива, установленного на камере. В современных вспышках рассеиватель укреплен неподвижно в корпусе, а моторный привод передвигает отражатель вспышки вместе с укрепленной на нем лампой-вспышкой. Такая конструкция позволила создать не только надежные, мощные и достаточно компактные вспышки, но и решить вопрос максимально экономного расходования энергии батарей.

Большинство современных топ-вспышек без каких-либо дополнительных насадок позволяют использовать как широкоугольную оптику с фокусным расстоянием от 24 мм, так и длиннофокусные объективы с фокусным расстоянием 85—105 мм и более, имея в любом случае максимально сфокусированный мощный световой пучок. К примеру, ведущее число вспышки Minolta Program Flash 5600HS (D) при использовании объектива 24 мм составляет 30 (в метрах для пленки ISO 100), а при фокусном расстоянии объектива 85 мм и более увеличивается почти вдвое — до 56! При этом зумирование головки вспышки происходит практически бесступенчато.

Синхронизация с фотоаппаратом

Срабатывание вспышки происходит практически мгновенно. Максимальная продолжительность импульса света редко превышает 1/500 долю секунды, а чаще всего происходит даже быстрее — вплоть до 1/10 000 доли секунды. Поэтому очень важно, чтобы вспышка произошла точно в тот момент, когда затвор аппарата будет открыт полностью.

Апертурный (центральный) затвор, располагаемый либо внутри объектива, либо в непосредственной близости от его линз, применяется в большинстве компактных пленочных аппаратов, в объективах крупноформатных и некоторых среднеформатных камер. Затвор такого типа на всех выдержках открывается полностью (хотя бы на мгновение). Поэтому с согласованием работы апертурного затвора и вспышки проблем не возникает — электронная вспышка на аппаратах с центральным затвором может быть использована практически без каких-то ограничений.

В цифровых фотоаппаратах (за исключением зеркальных) чаще всего применяется упрощенный механический затвор, фактически лишь прикрывающий матрицу в выключенном состоянии и во время визирования, а выдержка уже определяется временем опроса матрицы. В этом случае также практически никаких ограничений на работу со вспышкой не накладывается. Вспышка может быть применена на любой выдержке. Главное — чтобы выдержка была длиннее продолжительности импульса вспышки.

Фокальный (шторно-щелевой) затвор, которым обычно оснащаются зеркальные фотоаппараты, работает на совершенно другом принципе — одна шторка открывает кадровое окно, а вторая его закрывает. Синхроконтакт шторного затвора срабатывает либо после того, как открывающая шторка полностью открыла кадр, либо перед тем, как начинает движение вторая, закрывающая шторка. Выдержка, при которой вторая шторка начинает свое движение сразу после того, как первая полностью открыла кадровое окно, обычно называется «выдержкой синхронизации» (хотя более правильно называть ее «выдержкой полного открытия кадрового окна»). На более длинных выдержках шторный затвор также открывается полностью, что не создает проблем при пользовании вспышкой. А вот короткие выдержки в шторно-щелевом затворе образуются за счет того, что вторая (закрывающая) шторка начинает свое движение еще до того, как первая дойдет до края кадрового окна.

Соответственно при срабатывании синхроконтакта на коротких выдержках вспышка проэкспонирует не весь кадр, а только его часть, попавшую в щель между первой и второй шторками. Поэтому (если не применять некоторые технические ухищрения, о которых речь пойдет ниже) использовать вспышку можно только на скоростях затвора меньших, чем выдержка полного открытия кадрового окна. Впрочем, для затворов современных 35-мм зеркалок кратчайшая выдержка полного открытия кадрового окна находится в пределах от 1/90 секунды (недорогие любительские аппараты типа Canon EOS 300V) до 1/200 секунды (Minolta Dynax 7). Некоторые профессиональные аппараты имеют и более скоростные затворы, полностью открывающиеся на выдержках 1/250 секунды (например Canon EOS 1V) и даже 1/300 секунды (Minolta Dynax 9).

Синхронизация на сверхкоротких выдержках

Новейшие технологии позволили преодолеть ограничение на диапазон выдержек, накладываемое конструкцией шторно-щелевого затвора. Идея синхронизации на сверхкоротких выдержках, реализованная уже большинством производителей 35-мм фотоаппаратуры под названиями HSS (High Speed Sync.) и FP (Focal Plane sync.), весьма изящна — просто «заставить» лампу-вспышку излучать не один мощный импульс света, а генерировать в течение всего времени работы затвора множество маломощных импульсов с очень высокой частотой следования, практически сливающихся в один продолжительный импульс света. Такой принцип синхронизации позволил «отодвинуть» границу использования вспышки до невиданных ранее выдержек порядка 1/8000 секунды, давая возможность использовать, например, портретную светосильную оптику на открытых диафрагмах даже при ярком солнце.

Недостатков, конечно, и в такой системе хватает. В первую очередь это значительное уменьшение ведущего числа вспышки при переходе в режим сверхскоростной синхронизации (за счет потерь энергии при старт-стопном режиме работы вспышки). Мало того, ведущее число вспышки в таком режиме дополнительно уменьшается пропорционально выдержке (ведь с уменьшением ширины щели затвора на коротких выдержках количество света от вспышки, попадающего на пленку, становится тем меньше, чем уже щель). Поскольку работа в режиме высокоскоростной синхронизации требует изменения управления как вспышкой, так и аппаратом, воспользоваться этим режимом можно лишь в том случае, когда и аппарат, и вспышка поддерживают его.

Но даже с учетом всех этих недостатков режим высокоскоростной синхронизации со вспышкой часто весьма удобен.

Режимы работы вспышки

Ручной режим

Самые простые и недорогие вспышки не имеют совсем никакого управления. При срабатывании синхроконтакта такие вспышки переводят в световой импульс всю энергию, запасенную в конденсаторе. Для правильного экспонирования пленки при использовании такой вспышки приходится для каждого сюжета устанавливать соответствующее значение диафрагмы. Диафрагменное число рассчитывается, исходя из расстояния до объекта съемки и ведущего числа вспышки. Естественно, использование вспышки в таком режиме получается не слишком оперативным. К тому же вспышки, имеющие только режим полного разряда, оказываются еще и не универсальными. Мощная «дальнобойная» вспышка не позволит фотографировать на относительно близком расстоянии и при использовании высокочувствительной фотопленки. А удобная при такой съемке вспышка с небольшой энергией будет слишком слабой для съемки на длинных дистанциях или при работе с пленками небольшой чувствительности.

Более универсальной вспышку сделать можно при помощи переключаемой максимальной энергии. Однако все остальные недостатки использования в оперативной съемке неавтоматизированных вспышек при этом остаются. В настоящее время наиболее удачное применение вспышек с ручным управлением энергии импульса — это студийная съемка, где освещенность, создаваемая каждой из вспышек, определяется фотографом с учетом художественного замысла и контролируется при помощи флашметра. Также неавтоматические вспышки успешно применяются в недорогих P&S-камерах («мыльницах»). В этом случае владельцу аппарата для получения фотографий приемлемого качества достаточно только нажимать на кнопку спуска, не делая никаких настроек или регулировок. Ведь основная часть сюжетов с использованием вспышки снимается на расстоянии 2—3 метра, а в камеру заряжается любительская негативная пленка, «прощающая» даже значительные отклонения от нормальной экспозиции.

Автоматический режим

С развитием электроники электронные импульсные фотовспышки «обзавелись» встроенной автоматикой, позволившей значительно упростить процесс съемки со вспышкой, и сделав его столь же удобным, как и съемка при постоянном свете. Конструктивно автоматика состоит из силового элемента, управляющего разрядом вспышки, и специальной схемы контроля, использующей датчик, расположенный на передней панели корпуса вспышки. Этот датчик, будучи активированным при запуске вспышки, накапливает свет, отраженный от объекта съемки. Когда такая автоматика сочтет количество отразившегося от объекта съемки света достаточным для нормальной экспозиции, она прерывает разряд в лампе-вспышке. При этом на аппарате при съемке расположенных на различном расстоянии объектов не нужно постоянно изменять диафрагму. Требуется лишь установить кольцо диафрагмы на какое-то определенное значение (в соответствии с выбранной программой), а уж автоматика сама позаботится о необходимом для нормальной экспозиции количестве света.

Прерывание разряда у недорогих автоматических вспышек производится «добиванием» неиспользованной энергии конденсатора в специальном разряднике, подключаемом параллельно импульсной лампе. Такая автоматика отличается как весьма высоким энергопотреблением (как у неавтоматических вспышек!), так и ограничением на минимальный уровень энергии импульса. В более дорогих вспышках применяется управление принципиально другого типа, отключающее лампу-вспышку от накопительного конденсатора при помощи специализированного полупроводникового прибора (управляемого тиристора или IGBT-прибора), включенного последовательно между импульсной лампой и накопительным конденсатором. При таком управлении неиспользованная энергия сохраняется для дальнейшей работы, что позволяет увеличить как мощность, так и «скорострельность» вспышек, заодно значительно увеличивая ресурс элементов питания. Большинство современных автоматических фотовспышек обладают управлением именно такого, энергосберегающего, типа.

Все цепи схемы автоматики собираются внутри корпуса вспышки, поэтому такая автоматическая вспышка работает полностью автономно и может быть использована на любом аппарате. Естественно, в этом случае обязательно наличие на аппарате синхроконтакта, а также возможностей управления диафрагмой и установки выдержки синхронизации.

Вспышки со встроенной автономной автоматикой удобны для использования на камерах, не поддерживающих TTL-замер или более совершенные режимы управления вспышкой. Также не оставим без внимания использование автоматических вспышек с цифровыми фотоаппаратами, имеющими стандартный коаксиальный синхроконтакт или «горячий башмак» (например Fujifilm FinePix S602 zoom).

TTL-замер

Автоматические вспышки имеют некоторые принципиальные недостатки. Поскольку датчик автоматики установлен на корпусе вспышки и имеет фиксированный угол зрения (обычно примерно 25—40 градусов), то такая система может давать погрешности при работе с широкоугольными и длиннофокусными объективами. Автономная автоматика с внешним датчиком не учитывает влияния надетых на объектив светофильтров и насадок, изменения светосилы объектива при съемке в крупном масштабе или во время зумирования и так далее. Для решения этих вопросов проще всего оказалось перенести приемник автоматики в аппарат, чтобы производить измерение света, прошедшего через объектив и падающего непосредственно на пленку. Система с таким расположением датчика называется TTL-замером (Trough The Lens, «через объектив») или точнее — TTL-OTF (Off The Film, «от поверхности пленки»).

TTL-замер автоматически решает сразу все проблемы, связанные с учетом влияния на экспозицию насадок, светофильтров, угла зрения объектива и его светосилы, поскольку оценивается количество света, падающего непосредственно на пленку. В большинстве систем TTL-управления вспышкой в аппарате также располагается и электронная схема управления, определяющая момент отключения вспышки, а в корпусе вспышки остается только силовая электроника. Интегрирование TTL-замера для вспышки в конструкцию аппарата позволяет существенно упростить работу с навесной вспышкой, сделать ее максимально безошибочной и даже реализовать полностью автоматический программный режим при работе со вспышкой. Такой тип замера используется в большинстве современных зеркальных фотоаппаратов, постепенно внедряясь даже в конструкцию дальномерных профессиональных фотоаппаратов.

Как это всегда водится, не бывает ничего совершенного. И у классического TTL-замера также есть весьма серьезные недостатки. При обычном TTL-замере света, отраженного от плоскости пленки, на точность замера оказывает влияние отражающая способность поверхности пленки. Точнее говоря, проблемы вызывает разнобой значений этого коэффициента. К примеру, поверхность некоторых классических черно-белых пленок по сравнению с современными цветными заметно светлее, а следовательно, приводит к недоэкспонированию пленки. На другом «полюсе» можно привести в пример пленку Polaroid для мгновенного получения слайдов, имеющую практически черную поверхность. Впрочем, таких «проблемных» пленок немного, а для большинства современных пленок коэффициент отражения заключен в достаточно узких пределах.

Усовершенствование TTL-замера

Многозонный TTL-замер

Разнобоем коэффициента отражения поверхности пленки все недостатки классического TTL-OTF замера не исчерпываются. Благодаря особенности распространения света от точечного источника, при съемке со вспышкой в качестве основного источника света сюжетно важный передний план освещается гораздо более интенсивно, чем план задний. Наверняка вам знакомы эти типичные особенности «вспышечных» кадров — светлые, буквально выбеленные лица и фигуры на черном фоне. Датчик TTL-замера большинства фотоаппаратов обладает центрально взвешенной характеристикой восприятия. Поэтому метод вычисления правильной экспозиции на таких контрастных кадрах усреднением общего количества света по всей площади кадра часто дает «осечку».

Ведущие производители фотоаппаратуры начали совершенствование TTL-замера для вспышки такими же методами, как и для замера постоянного света. В ходе этого процесса единственный датчик вспышечного TTL-замера, имеющий центрально взвешенную характеристику, уступил место более сложной конструкции, состоящей из 3—5 датчиков (например Canon EOS 5). Такой датчик обеспечивает возможность многозонного замера света, позволяющего получить более детальные данные о распределении света по площади кадра и, естественно, более точно отмерить энергию импульса света, необходимого для правильного экспонирования объекта съемки.

Важным свойством такой многозонной системы явилось и то, что к остальным компонентам фотосистемы (объективам и вспышкам) не предъявляется никаких дополнительных требований. Поэтому такой многозонный TTL-OTF замер света вспышки используется и в современных аппаратах в том случае, когда из-за применения недостаточно совместимых объективов или вспышек не могут быть реализованы более продвинутые алгоритмы управления вспышкой. К примеру, современные автофокусные аппараты Nikon автоматически переходят в режим Multi-Sensor Balanced Fill-Flash (матричной сбалансированной вспышки-подсветки) в том случае, когда используются объективы и вспышки, не поддерживающие 3D-замер.

Матричный замер с предвспышкой E-TTL

Следующий шаг в совершенствовании системы управления вспышкой — это использование предварительной вспышки, оцениваемой матрицей многозонного экспозамера (той же, которая используется и для определения экспозиции по естественному свету). Количество датчиков в матрице многозонного замера значительно больше (от 14 зон у Minolta Dynax 7 до 35 у Canon EOS 30), а их расположение оптимально согласуется с расположением сенсоров фокусировки аппаратов, позволяя учитывать при обработке результатов замера и результаты работы системы автофокуса. Примером такого подхода к управлению вспышкой может служить система E-TTL (Evaluative Trough-The-Lens), применяемая в текущей линейке аппаратов Canon EOS. Для определения необходимого уровня энергии импульса основной вспышки используется предвспышка, которая излучается сразу после нажатия кнопки срабатывания затвора, но еще до подъема зеркала. Отразившийся от объекта свет предвспышки в системе E-TTL воспринимается многозонной матрицей оценочного замера.

Поскольку эта же матрица используется и для замера естественного света, то сравнение результатов предвспышки с уровнем постоянного освещения оказывается простым и корректным процессом. На основании этих данных рассчитывается оптимальный импульс для главного объекта съемки, идентифицировать который помогает система автофокусировки. Соответственно даже в случае попадания в кадр обширных поверхностей с высокой или низкой отражающей способностью последние оказывают минимально вредное влияние на точность экспонирования главного объекта съемки. Кроме повышения точности экспонирования такая система позволяет сохранить более естественный баланс уровня освещенности между передним планом и фоном при работе в режиме заполняющей вспышки. Аналогичным образом функционируют системы preflash-TTL (Minolta Dynax 9) и P-TTL (современные аппараты Pentax).

Категория: Новости | Просмотров: 2197 | Добавил: timur1 | Рейтинг: 0.0/0 |
Всего комментариев: 1
1 Алена  
0
Обалденно написанно. Спасибо огромное.


Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]


Форма входа
Календарь новостей
«  Март 2009  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
3031
Поиск
Друзья сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Copyright MyCorp © 2024